Day 18

Kalman Filter

Plant or Process Model

 describes how the system state changes as a function of time, control input, and noise

$$x_{k+1} = \Phi x_k + \Gamma u_k + v_k$$

- x_k state at time k
- u_k control inputs at time k
- v_k process noise at time k
- $\blacktriangleright \Phi$ state transition model or matrix
- Γ control-input model or matrix

Measurement Model

 describes how sensor measurements vary as a function of the system state

$$z_k = \Lambda x_k + w_k$$

- > z_k sensor measurement at time k
- \mathbf{W}_k sensor noise at time k
- \blacktriangleright Λ observation model or matrix

Kalman Filter

- the Kalman filter is a provably optimal (in terms of leastsquared error) algorithm for fusing sensor measurements to produce an estimate of the state and the state covariance
 - x_k state at time k
 - P_k state covariance at time k

Kalman Filter

- the Kalman filter estimates a process in two stages
 - prediction: current state and state covariance estimates are Ι. projected forward in time to predict the new state and state covariance
 - "time update equations"
 - correction: the sensor measurements are incorporated into the 2. predicted state to obtain improved estimates of the state and state covariance

"measurement update equations"

I. Initialization

 choose (guess) initial values for state and state covariance estimates

> \hat{x}_0 P_0

2. Prediction:

predict the next state using the plant model

$$\hat{x}_{k+1|k} = \Phi \hat{x}_k + \Gamma u_k$$

 state covariance grows (because we are not incorporating the sensor measurements yet)

$$P_{k+1|k} = \Phi P_k \Phi^T + C_{v_k}$$

• C_{v_k} covariance of the plant noise

- 3. **Correction:** correct the predicted state using the sensor measurement
 - expected value of measurements (from measurement model)

$$\hat{z}_{k+1} = \Lambda \, \hat{x}_{k+1|k}$$

• difference between actual and expected measurements $r_{k+1} = z_{k+1} - \hat{z}_{k+1}$

$$V_{k+1} - z_{k+1} - z_k$$

measurement covariance

$$S_{k+1} = \Lambda P_{k+1|k} \Lambda^T + C_{w_{k+1}}$$

Kalman gain

$$K_{k+1} = P_{k+1|k} \Lambda^T S_{k+1}^{-1}$$

4. State and state covariance:

new state estimate incorporating most recent measurement

$$\hat{x}_{k+1} = \hat{x}_{k+1|k} + K_{k+1} r_{k+1}$$

new state covariance estimate

$$P_{k+1} = \left(I - K_{k+1} \Lambda\right) P_{k+1|k}$$